

The N-acylating and N-alkoxycarbonylation ability of the N-substituted 1,2,3-triazolo[4,5-c]pyridines $\mathbf{1 a - e}$ have been investigated. The alkoxycarbonyl triazolopyridine derivatives ($\mathbf{1} \mathbf{c}-\mathbf{e}$) were readily prepared in 81-96 \% yield (the corresponding tetrafluoroborate $>95 \%$). Triazolo[4,5-c]pyridine (1) has been shown to work as a good leaving group by the formation of amido- and carbamate protected derivatives of primary amines. The method was also successful for the N-tert-butoxycarbonyl (N-BOC) protection of the amino acid, phenylalanine. The synthetic transformations are facilitated by the one-pot preparation of 1a-e followed by the direct reaction with the amines or amino acid. The present method thus offers an efficient and convenient protocol for the in situ preparation of triazolopyridine reagents to be used directly for the protection of amines and amino acids. N-Acyl- and N-alkoxycarbonyl triazolopyridines (1a-e) were readily prepared in 4 steps from 4 -aminopyridine (4) by amine protection, pyridine nitration, nitro reduction and diazotizations/cyclizations. All reactions offer the advantages of rapid conversions in high yields under very mild conditions.
J. Heterocyclic Chem., 43, 417 (2006).

Introduction.
Some substituted 1,2,3-triazolopyridines (1,2) are analgesic, antipyretic, antiasthmatic or useful as inflammation inhibitors [1,2] while others have been patented for their anxiolytic antidepressant properties [3] and herbicidal activity [4]. The 1,2,3-triazolo[4,5-c]pyridine (1) is a commercially available fine chemical, but to our knowledge, only to a very high price. Substituted 1,2,3triazolopyridines $(\mathbf{1 , 2})$ have previously been prepared by amine substitution of a chloroaminopyridine followed by diazotization and cyclization [1,5]. Diazotization of ethyl 2-aminopyridyl-3-carbamate with isoamyl nitrite in acetic acid has been reported to give the ethyl 3-carbamate derivative of 1,2,3-triazolo[4,5-b]pyridine (2) [6] while 1,2,3-benzotriazole (3) has been synthesized in high yields by diazotization of o-phenylenediamine with sodium nitrite in acetic acid solution followed by cyclization [7-10].

1
1,2,3-triazolo[4,5-c]pyridine

2
1,2,3-triazolo[4,5-b]pyridine

3
benzotriazole

The use of N-acylbenzotriazole (3-Ac, see Scheme 1) as an effective neutral acylating agent for the preparation of primary, secondary and tertiary amides has been reported by Katritzky et al. [11]. As an alternative to N-acylimidazole several advantages have been reported for the N -acylbenzotriazoles. They are stable crystalline nonvolatile storable intermediates and allow the acyl group to be introduced and removed easily by simple work-up procedures.

Katritzky et al. have demonstrated the synthetic auxiliary properties of benzotriazole [12]. Due to the activation of the carbon to which the triazole is attached, a series of synthetic transformations can be performed. The reaction principle have been applied for the C-acylation of sulfones in the preparation of β-ketosulfones [13], of alkyl cyanides to α-substituted β-ketonitriles [14] and for the synthesis of β-dicarbonyl compounds [15], as well as for regiospecific C-acylation of heterocycles [16]. 1,2,3-Triazolo[4,5-b]pyridine (2) has also been studied for its acylation and alkoxycarbonylation abilities [6].

The high reactivity of these acylating agents is caused by the relative weakness of the "amide" bond; the aromatic character of the heterocycle makes the $-: \mathrm{N}-\mathrm{C}=\mathrm{O}$ less delocalized and therefore less stabilized compared to regular amides. Triazolopyridine (1) is expected to be an

Scheme 1

even better leaving group than benzotriazole 3 due to the π-electron-deficient character of the pyridine moiety.

We have investigated the corresponding N-acylating and N -alkoxycarbonylation properties of the triazolopyridine derivatives 1a-e aiming at the formation of amido- and carbamate protected derivatives of primary amines and BOC amino acids. The method was also applied on one amino acid for the preparation of the N -tert-butylcarbonyl (BOC) derivative. The diazotization reactions of 3,4-diaminopyridine derivatives (7a-e) for the preparation of the 1,2,3-triazolopyridine derivatives (1a-e) have been studied. The key substrates for our syntheses of 1a-e are 4 -substituted 3-nitropyridines, which have now been readily available through an improved nitration method [17,18].

3,4-Diaminopyridine, which is a suitable substrate for the preparation of unsubstituted 1,2,3-triazolopyridine (1) [5], has also readily been prepared by the improved nitration method, affording higher yields [19] compared to previous methods [20].

Results and Discussion.
Preparation of Triazolopyridine Derivatives 1a-e.
The acyl- and alkoxycarbonyl triazoles 1a-e were readily available from 4-aminopyridine (4) via 7a-e in four steps, as shown in Scheme 2. The nitration of 4aminopyridine (4) was carried out after protection of the 4 -amino group by acyl or alkoxycarbonyl groups to give $\mathbf{6 a , b}$ and $\mathbf{6 c} \mathbf{c} \mathbf{e}$, respectively $[19,21]$. Methyl carbamate 6c has also been prepared by nitration of methyl 4pyridylcarboxylate (5) followed by diazotization of the hydrazide intermediate and Curtius rearrangement in methanol [22]. The amides (7a,b) and carbamates (7c-e) were obtained by selective reduction of the nitro group in quantitative yield by catalytic hydrogenation. As expected, traditional diazotization (sodium nitrite, sulfuric acid) of the methyl carbamate 7c and cyclization of the
diazonium intermediate afforded the non-derivatised triazolopyridine (1) in quantitative yield. However, by less vigorous diazotization conditions, using iso-amyl nitrite and tetrafluoroboric acid in ethanol or nitrosonium tetrafluoroborate in acetonitrile, the carbamates 7c-e were readily converted to the alkoxycarbonyl triazolopyridines ($\mathbf{1 c - e)}$ and isolated as the corresponding tetrafluoroborates in $>95 \%$ yield. Respectively, the "free" triazolopyridine derivatives (1c-e) were prepared in 81-96 \% yield by acetic acid and iso-amyl nitrite [6] for characterization. The N-acyltriazolopyridines (1a,b) were correspondingly obtained by iso-amyl nitrite/tetrafluoroboric acid or nitrosonium tetrafluoroborate diazotization of the amides 7a,b. The hydrolysis product $\mathbf{1}$ was readily prepared by heating crystalline 1a in sulfuric acid (2 \%).

In general, either iso-amyl nitrite/tetrafluoroboric acid or nitrosonium tetrafluoroborate could be used for the diazotization and cyclization of 7a-e to the triazolo products 1a-e. ${ }^{1} \mathrm{H} \mathrm{nmr}$ of the crude products showed quantitative and spontaneous formation of the cyclic products 1a-e by both methods. The triazolopyridines 1a-e are formed as tetrafluoroborates. Our experience was, however, that especially the amido products $\mathbf{1 a , b}$ were sensitive to moisture due to water in the tetrafluoroboric acid solution. We observed that the amidotriazolo compounds $\mathbf{1 a}, \mathbf{b}$ were less stable than the carbamates $\mathbf{1 c - e}$, using the tetrafluoroboric acid/iso-amyl nitrite reaction conditions, since 1a,b easily hydrolyzed to triazolopyridine 1 during work-up from the tetrafluoroboric acid solution. Nearly quantitative yields of all the crude products 1a-e were obtained using nitrosonium tetrafluoroborate, as shown by ${ }^{1} \mathrm{H} \mathrm{nmr}$. To avoid hydrolysis of the triazolo derivatives 1a-e we therefore preferred the milder nitrosonium tetrafluoroborate method.
The cyclization of 7a-e to the triazolo compounds 1a-e could easily be followed by ${ }^{1} \mathrm{H} \mathrm{nmr}$. Due to the deshielding effect of the triazolo moiety, unusual high pyridine proton frequencies were in particular observed
for $\mathrm{H}-2$ for the tetrafluoroborates of 1a-e. This is demonstrated by the pyridine chemical shift of $\mathrm{H}-2$ of $\mathbf{1 c}$ tetrafluoroborate; $\delta 9.89$ in deuterochloroform and 10.33 in $d_{6^{-}}$ acetone, respectively. The ir spectra of the triazolo derivatives were also characteristic as shown by the high frequency strong carbonyl absorptions at approximately $1800 \mathrm{~cm}^{-1}$, most predominant for the methyl carbamate (1c).
We experienced that the methoxy- and ethoxycarbonyl derivatives $\mathbf{1 c , d}$ could be purified by flash chromatography and that the crystalline products $\mathbf{1 c , d}$ could be stored at room temperature for weeks. The tert-butyl carbamate 1e and the acyl compounds 1a,b were however less stable and could neither be stored nor isolated by chromatography.
borates of the cyclic triazolopyridines 1a-e by addition of nitrosonium tetrafluoroborate, the immediate reactions with the subsequently added iso-propylamine or benzylamine were complete within few minutes, as shown by ${ }^{1} \mathrm{H} n \mathrm{nr}$. The amine derivatives 8a-j were isolated in $72-84 \%$ yield by flash chromatography without extraction (Table 1). We observed that the in situ prepared triazolopyridine tetrafluoroborate reagents ($\mathbf{1 c - e}$ tetrafluoroborates) were more reactive than the "free" triazolopyridine reagents ($\mathbf{1 c - e}$), due to the activation by protonation of the triazolopyridine in order to improve its leaving group ability.

Katritzky's method [11] (Scheme 1) is based on the non-derivatised benzotriazole substrate and involves an additional benzotriazole mesylation step ($\mathbf{3}$ to $\mathbf{3}-\mathbf{M s}$) before acylation (3-Ms to 3-Ac) and eventually the

Scheme 2

N -Acylation and N -Alkoxycarbonylation.
Due to their high reactivity, the prepared triazolopyridines 1a-e were used immediately for the derivatization of amines. For synthetic use we thus developed a convenient method for the in situ preparation of 1a-e followed by the direct reaction with amines (Scheme 3). After the spontaneous and complete conversion of the noncyclic precursors 7a-e to the corresponding tetrafluoro-
reaction with the substrate to be modified. By preparation of both the mesyltriazolopyridine $\mathbf{1 - M s}$ and benzotriazole 3-Ms by the Katritzky method [11], the triazolopyridine 1-Ms was, as expected, less stable than $\mathbf{3 - M s}$. Similarly to the acyltriazolopyridines ($\mathbf{1 a , b}$) 1-Ms had to be used for synthetic purposes immediately and could not be properly characterised or stored. Compared to the Katritzky methodology (in Scheme 1), following our protocol

Table 1
Protection of iso-propyl- and benzylamine with triazolopyridine reagents 1a-e (see Scheme 3).

Triazolopyridine	Amine	Product	Conversion/Yield [a]	[ref]
1a	iso-propylamine	8a; $\mathrm{X}=\mathrm{Ac}, \mathrm{R}=i-\mathrm{Pr}$	>99 \% / 76 \%	[23]
	benzylamine	8b; $\mathrm{X}=\mathrm{Ac}, \mathrm{R}=\mathrm{Bn}$	>99 \% / 72 \%	[24]
1b	iso-propylamine	8c; $\mathrm{X}=\mathrm{Bz}, \mathrm{R}=i-\mathrm{Pr}$	>99 \% / 72 \%	[25]
	benzylamine	8d; $\mathrm{X}=\mathrm{Bz}, \mathrm{R}=\mathrm{Bn}$	>99 \% / 73 \%	[26]
1c	iso-propylamine	8e; $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}=i$ - Pr	>99 \% / 76 \%	[27]
	benzylamine	8f; $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}=\mathrm{Bn}$	>99 \% / 84%	[28]
1d	iso-propylamine	8g; $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}=i-\mathrm{Pr}$	>99 \% / 73 \%	[29]
	benzylamine	8h; $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}=\mathrm{Bn}$	>99 \% / 73 \%	[30]
1e	iso-propylamine	8i; $\mathrm{X}=\mathrm{CO}_{2} t-\mathrm{Bu}, \mathrm{R}=i-\mathrm{Pr}$	>99 \% / 74 \%	[31]
	benzylamine	8j; $\mathrm{X}=\mathrm{CO}_{2} t$ - $\mathrm{Bu}, \mathrm{R}=\mathrm{Bn}$	>99 \% / 73 \%	[32]

[^0]Scheme 3

(Scheme 2,3), the N-acyl or the N-alkoxycarbonyl groups have already been introduced, and the acyl- and alkoxycarbonyl triazoles (1a-e) can be made directly by diazotization and cyclization. For our purposes the mesylated intermediate ($\mathbf{1 - M s}$) can thus be left out.

Protective groups are important in amino acid chemistry. Carbamates are in particular used as protective groups for amino acids to minimize racemization in peptide synthesis. Since the tert-butoxy carbamate (BOC) group, is extensively used for amino acid protection, the tert-butoxy carbonyl (BOC)-triazolopyridine method was applied on one amino acid to demonstrate the versatility of the method. In a similar manner as above for the primary amines, L-phenylalanine ethyl ester 9a (Scheme 4) was reacted with BOC-triazolopyridine $\mathbf{1 e}$, prepared in situ, to give the BOC protected amino acid $\mathbf{9 b}$. The reaction was slower than the previous ones ($\mathbf{8 a - j}$) and full conversion to the BOC amino acid 9b, was obtained in 4 days, as shown by ${ }^{1} \mathrm{H} \mathrm{nmr}$ of the reaction mixture. After chromatography 76% yield was obtained. The optical purity of the BOC protected amino acid $\mathbf{9 b}$ was not lost during the reaction.

Scheme 4

Conclusion.
The N-acylating and N-alkoxycarbonylation ability of the 1,2,3-triazolopyridine derivatives 1a-e were studied. The alkoxycarbonyl triazolopyridine derivatives (1c-e) were readily prepared in 81-96 \% yield and the corresponding tetrafluoroborates in $>95 \%$ yield. 1,2,3-Triazolo[4,5c]pyridine (1) has been shown to work as a good leaving group in the acylation and alkoxycarbonylation of amines. The method was also successful for the N-tert-butyl
 The met was also successtul for the N-tertbutyl
carbamate (N-BOC) protection of the amino acid phenylalanine ($\mathbf{9 a}$). The protection reactions of iso-propyland benzylamines were complete within few minutes and the amides and carbamates 8a-j, were isolated in $72-84 \%$ yield. Longer reaction time was needed for the amino acid since L-phenylalanine was converted to the BOC protected amino acid (76%) in 4 days.
The synthetic transformations were facilitated by development of the in situ preparation method of 1a-e to offer the advantages of a one-pot procedure. N -Acyl- and N -alkoxycarbonyl-1,2,3-triazolo[4,5-c]pyridine (1a-e) were readily prepared in 4 steps from 4 -aminopyridine (4) by amine protection, pyridine nitration, nitro reduction and diazotization/cyclization.

Our strategy thus offers an efficient and convenient protocol for the in situ preparation of triazolopyridine reagents to be used directly for the protection of amines. All reactions are performed quickly in high yields under very mild conditions. The triazolopyridine method may have a synthetic potential for a series of transformations and may represent a supplement to the benzotriazole methodology.

EXPERIMENTAL

Chemicals: Nitrosonium tetrafluoroborate (Sigma), tetrafluoroboric acid and iso-propylamine (Acros), iso-amyl nitrite and benzylamine (Fluka); solvents: pro analysi quality. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ nmr: Bruker Avance DPX 300 and 400 MHz spectrometers, chemical shifts are reported in ppm downfield from tetramethyl silane. Hexafluorobenzene was correspondingly used as reference for ${ }^{19} \mathrm{~F}$ nmr. J values are given in Hz. ms: Finnigan MAT 95 XL (EI / 70 eV). ir: Nicolet 20SXC FT-IR spectrophotometer. All melting points are uncorrected, measured by Griffin apparatus. Elemental analysis was measured by an Elementar Vario III instrument at the Institute of Chemical Technology, Prague. Flash chromatography: Silica (sds, $60 \AA$, 40-63 $\mu \mathrm{m}$). The intermediates 6a-e and $\mathbf{7 a}-\mathbf{e}$ were prepared by nitration and reduction according to the literature [21,33-35].

Triazolopyridine Derivatives (1a-e).
Tetrafluoroborates were prepared for characterization by the following general diazotization procedure: A solution of 7a-e
($100 \mathrm{mg}, 0.47-0.66 \mathrm{mmol}$), tetrafluoroboric acid ($43-63 \mathrm{mg}, 1.05$ equivalent) and iso-amyl nitrite ($58-81 \mathrm{mg}, 1.05$ equiv.) in ethanol (1 ml) was stirred at $0{ }^{\circ} \mathrm{C}$ for approx. 15 minutes. The product 1a-e were afforded as tetrafluoroborates, pure by ${ }^{1} \mathrm{H}$ nmr. The acyl (1a,b) and the tert-butyl carbamate (BOC, 1e) products easily hydrolyzed into the non-derivatised triazolopyridine 1 by extraction and isolation and were therefore prepared in situ (see below) and used directly in the next step without further purification. Only methoxy- and ethoxycarbonyltriazolopyridine ($\mathbf{1 c , d}$) were fully characterized as their respective tetrafluoroborates, while the "free" methoxy, ethoxy and tert-butoxy triazolopyridine derivatives ($\mathbf{1 c , d , e}$) were characterized after preparation by acetic acid and iso-amyl nitrite [6]. For synthetic use, all compounds 1a-e were prepared in situ and reacted directly with the amines, see general N acylation $/ N$-alkoxycarbonylation procedure below.

1-Acetyl-1 H -1,2,3-triazolo[4,5-c]pyridine (1a) Tetrafluoroborate.
This compound was prepared from $\mathbf{7 a}$, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$ (quantitative conversion); ${ }^{1} \mathrm{H} \mathrm{nmr}$ ($300 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide): $\delta 3.01$ (s, 3H), 8.46 (d, J 6.2, 1H, H-5), 8.60 (d, J $6.2,1 \mathrm{H}, \mathrm{H}-6), 9.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(100 \mathrm{MHz}, d_{6}\right.$-dimethyl sulfoxide): $\delta 12.6,111.1,135.8,139.7,142.4,143.1,170.0 .{ }^{19} \mathrm{~F}$ $\mathrm{nmr}\left(376 \mathrm{MHz}, d_{6}\right.$-dimethyl sulfoxide) δ-148.8.

1-Benzoyl-1 H -1,2,3-triazolo[4,5-c]pyridine (1b) Tetrafluoroborate.

This compound was prepared from 7b, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$ (quantitative conversion); ${ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, deuteriochloroform): $\delta 7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.86$ (d, J 7.2, 2H), 8.33 (d, J 6.8, 1H, H-5), 8.60 (d, J 6.8, 1H, H-6), 9.81 (s, 1H, H-2); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (100 MHz , deuteriochloroform): $\delta 110.7$, $128.4,129.0,129.3,133.5,135.1,138.5,140.0,140.6,169.8 .{ }^{19} \mathrm{~F}$ $\mathrm{nmr}\left(376 \mathrm{MHz}, d_{\sigma}\right.$-dimethyl sulfoxide) δ-148.3.

1-Methoxycarbonyl-1 H -1,2,3-triazolo[4,5-c]pyridine (1c) Tetrafluoroborate.

This compound was prepared from 7c, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$ (quantitative conversion). 1c tetrafluoroborate precipitated quantitatively from the reaction solution and could be recrystallized ($>95 \%$); mp $156-157^{\circ} \mathrm{C}$ (acetone). ir (potassium bromide) $3274 \mathrm{~s}, 3147 \mathrm{~m}, 3087 \mathrm{~m}, 2969 \mathrm{w}$, 1800s, $1644 \mathrm{~s}, 1618 \mathrm{~m}$, $1552 \mathrm{~m}, 1474 \mathrm{~s}, 1437 \mathrm{~m}, 1369 \mathrm{~m}, 1253 \mathrm{~s}, 1090 \mathrm{~s}, 943 \mathrm{~m}, 911 \mathrm{~s} \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, d_{6}\right.$-dimethyl sulfoxide): $\delta 4.30$ (s, 3H), 8.38 (d, J 6.1, 1H, H-5), 8.89 (d, J 6.1, 1H, H-6), 9.89 (s, 1H, H-2); correspondingly in d_{6}-acetone: $\delta 4.37(\mathrm{~s}, 3 \mathrm{H}), 8.88$ (d, J 6.8, $1 \mathrm{H}, \mathrm{H}-5$), 9.25 (d, J 6.8, 1H, H-6), 10.33 (s, 1H, H-2); ${ }^{13} \mathrm{C} \mathrm{nmr}$ ($75 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide): $\delta 56.0,110.6,135.8,140.6$, $142.4,145.4,148.2 ;{ }^{19} \mathrm{~F} \mathrm{nmr}$ ($376 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide) δ-148.5.
Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 31.61; H, 2.65; $\mathrm{N}, 21.07$. Found: C, 31.67; H, 2.54; N, 20.85.

1-Methoxycarbonyl-1 $\mathrm{H}-1,2,3$-triazolo[4,5-c]pyridine (1c).

Free 1c was prepared according to literature [6] to give 92% yield, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$; mp $139-140{ }^{\circ} \mathrm{C}$; ir (potassium bromide) $3106 \mathrm{~m}, 3000 \mathrm{w}, 2972 \mathrm{w}, 1794 \mathrm{~s}, 1626 \mathrm{~m}, 1475 \mathrm{~m}, 1448 \mathrm{~m}, 1377 \mathrm{~s}$, $1330 \mathrm{~m}, 1256 \mathrm{~s}, 1213 \mathrm{~s}, 1181 \mathrm{~s}, 1062 \mathrm{~s}, 922 \mathrm{~m}, 844 \mathrm{~m}, 759 \mathrm{~m}, 587 \mathrm{~m}$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 4.28(\mathrm{~s}, 3 \mathrm{H})$, 8.03 (dd, J 1.1, 5.7, 1H, H-2), 8.78 (d, J 5.7, 1H, H-6), 9.60 (d, J $1.1,1 \mathrm{H}, \mathrm{H}-5$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ ($75 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide): $\delta 56.2$, $108.4,136.5,143.3,145.1,148.6,149.3 ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 178\left(\mathrm{M}^{+}, 51\right.$
$\%$), 150 (13), 135 (53), 119 (15), 107 (100), 91 (12), 80 (26); HRMS: calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} ; 178.04908$, observed 178.04917.
1-Ethoxycarbonyl-1 H-1,2,3-triazolo[4,5-c]pyridine (1d) Tetrafluoroborate.

This compound was prepared from $7 \mathbf{d}$, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$ (quantitative conversion, > 95% isolated yield); mp 143.5-144.5 ${ }^{\circ} \mathrm{C}$ (pentane); ir (potassium bromide) 3066w, 1771s, 1635s, $1613 \mathrm{~s}, 1558 \mathrm{~m}, 1498 \mathrm{~m}, 1323 \mathrm{~s}, 1109 \mathrm{~s}, 1070 \mathrm{~s}, 1018 \mathrm{~s}, 958 \mathrm{~m}, 838 \mathrm{~m}$, $786 \mathrm{~s}, 713 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ ($300 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide): δ 1.60 (t, J 7.1, 3H), 4.75 (q, J 7.1, 2H), 8.30 (d, J 6.1, 1H, H-2), 8.88 (d, J 6.1, 1H, H-6), 9.85 (s, 1H, H-5), ${ }^{13} \mathrm{C} \mathrm{nmr}\left(75 \mathrm{MHz}, d_{6^{-}}\right.$ dimethyl sulfoxide): δ 13.9, 65.9, 109.6, 136.8, 142.2, 143.0, 145.1, 147.5 ; ${ }^{19} \mathrm{~F} \mathrm{nmr}\left(376 \mathrm{MHz}, d_{6}\right.$-dimethyl sulfoxide) δ-148.1.

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 34,32; H, 3,24; $\mathrm{N}, 20,01$. Found: C, 33.98; H, 3,23; N, 19,75.

1-Ethoxycarbonyl-1 $\mathrm{H}-1,2,3$-triazolo[4,5-c]pyridine (1d).

Free 1d was prepared according to literature [6] to give 96% yield, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$; mp $170-171^{\circ} \mathrm{C}$; ir (potassium bromide) $3159 \mathrm{~m}, 2989 \mathrm{~m}, 1790 \mathrm{~s}, 1710 \mathrm{~s}, 1593 \mathrm{~m}, 1514 \mathrm{~m}, 1477 \mathrm{~m}, 1401 \mathrm{w}$, 1366m, 1319w, 1231s, 1062s, 837w, 795w, 772w cm ${ }^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 1.61$ (t, J 7.1, 3H), 4.74 (q, J $7.1,2 \mathrm{H}$), 8.04 (dd, J 1.0, 5.7, 1H, H-2), 8.78 (d, J 5.7, 1H, H-6), 9.56 (d, J $1.0,1 \mathrm{H}, \mathrm{H}-5$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (75 MHz , deuteriochloroform): $\delta 13.8,65.5,107.7,135.6,142.4,144.2,147.6,147.9 ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$ $192\left(\mathrm{M}^{+}, 25 \%\right), 164$ (6), 136 (100), 120 (54), 105 (2), 92 (61), 80 (12); HRMS: calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} ; 192.0647$ observed 192.06419.

1-tert-Butoxycarbonyl-1H-1,2,3-triazolo[4,5-c]pyridine (1e) Tetrafluoroborate.

This compound was prepared from $\mathbf{7 e}$, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$ (quantitative conversion, > 95% isolated yield); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz, d_{6}-dimethyl sulfoxide): $\delta 1.72(\mathrm{~s}, 9 \mathrm{H}), 8.35$ (d, J $6.4,1 \mathrm{H}$, H-5), 8.84 (d, J 6.4, 1H, H-6), 9.97 (s, 1H, H-2); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(100}$ MHz , deuteriochloroform): $\delta 27.7,89.9,111.8,135.9,141.7$, $142.8,146.0,149.4 ;{ }^{19} \mathrm{~F} \mathrm{nmr}$ ($376 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide) δ -148.9.

1-tert-Butoxycarbonyl-1 H -1,2,3-triazolo[4,5-c]pyridine (1e).
Free 1e was prepared from 7e and nitrosonium tetrafluoroborate and added triethyl amine to give 81% yield of free $\mathbf{1 e}$, pure by ${ }^{1} \mathrm{H} \mathrm{nmr}$; mp $87-88^{\circ} \mathrm{C}$; ir (potassium bromide) 3004 m , 2989m, 1782m, 1709s, 1601w, 1364s, 1321w, 1255m, 1222m, $1152 \mathrm{~m}, 1092 \mathrm{~m}, 1040 \mathrm{~m}, 930 \mathrm{w}, 828 \mathrm{w} \mathrm{cm}{ }^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, deuteriochloroform): $\delta 1.79$ (s, 9H), 7.98 (dd, J $0.8,5.6,1 \mathrm{H}, \mathrm{H}-$ 2), 8.74 (d, J 5.6, $1 \mathrm{H}, \mathrm{H}-6$), 9.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$); ${ }^{13} \mathrm{C} \mathrm{nmr}(100$ MHz , deuteriochloroform): $\delta 27.9,88.0,108.1,135.9,142.9$, $144.5,146.5,147.7$.
1-Methylsulfonyl-1 $\mathrm{H}-1,2,3$-triazolo[4,5-c]pyridine (1-Ms).
This compound was made according to the procedure for N -(1-methanesulfonyl)benzotriazole (3-Ms) [11] in 30% yield. The compound was unstable and could not be isolated for full characterization; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): 3.54 ($\mathrm{s}, 3 \mathrm{H}$), 7.86 (dd, J 5.80, 1H), 8.69 (d, J 5.80, 1H), 9.47 (d, J 1.0, 1 H); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (75 MHz , deuteriochloroform): $\delta 43.1,106.6$, 135.8, 141.9, 144.8, 147.9. IR (film): 3651, 3422, 2254, 1598, 1386, 1255, 1194, 1179, 967, $734 \mathrm{~cm}^{-1}$; ir (potassium bromide) 1598w, 1386m, 1193s, 1179s cm ${ }^{-1}$;

1H-1,2,3-Triazolo[4,5-c]pyridine (1).

A solution of $7 \mathbf{c}(120 \mathrm{mg}, 0.72 \mathrm{mmol})$, in water (6 ml) was dropwise added sulfuric acid (conc. 0.1 ml). The mixture was stirred, cooled to $0^{\circ} \mathrm{C}$ and drop-wise added a solution of sodium nitrite (124 $\mathrm{mg}, 1.8 \mathrm{mmol}, 2.5$ equivalents) in water (3 ml) during 10 minutes. The reaction mixture was left stirring at $0^{\circ} \mathrm{C}$ for 1 hour and refluxed for 3 hours. The pH was adjusted to 5-6 by addition of a saturated sodium carbonate solution. An off-white crystalline product, pure by ${ }^{1} \mathrm{H}$ nmr, was obtained after extraction, drying and evaporation of the solvent ($85 \mathrm{mg}, 99 \%$). $\mathbf{1}$ was also quantitatively prepared from triazolo carbamate 1c by heating in 2% sulfuric acid for 20 minutes; $\mathrm{mp} 186-187{ }^{\circ} \mathrm{C}$; ir (potassium bromide) $3414 \mathrm{~m}, 1625 \mathrm{~m}, 1457 \mathrm{w}$, $1323 \mathrm{w}, 1139 \mathrm{~s}, 995 \mathrm{~m}, 620 \mathrm{~s} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ ($300 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide): $\delta 7.89$ (d, J 5.9, 1H, H-5), 8.49 (d, J 5.9, 1H, H-6), 9.47 (s, $1 \mathrm{H}, \mathrm{H}-1)$; ${ }^{13} \mathrm{C} \mathrm{nmr}$ ($75 \mathrm{MHz}, d_{6}$-dimethyl sulfoxide): $\delta 107.5,139.0$, 140.0, 141.7, 142.4; ms: m/z 120 ($\mathrm{M}^{+}, 100 \%$), 92 (81), 65 (48), 52 (20); HRMS: calcd for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} 120.04360$, observed 120.04329.
N-Acylation and N-Alkoxycarbonylation of Primary Amines by 1a-e, Prepared in situ.
The amides and carbamates 8a-j [23-32] were prepared from isopropylamine or benzylamine, respectively, and 1a-e, prepared in situ from 7a-e, by the following general procedure: The appropriate 3-amino-4-pyridyl carbamate (7a-e, $0.5-1.0 \mathrm{mmol}, 1.1$ equivalents) was dissolved in dry acetonitrile (3 ml) under N_{2} atmosphere. Nitrosonium tetrafluoroborate (1.1 equivalent) in dry acetonitrile (3 ml) was cooled to $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and the aminocarbamate (7a-e) solution was added drop-wise. After stirring for 20 minutes cooling was removed. Iso-propylamine or benzylamine (1 equivalent) was dissolved in dry acetonitrile (1 ml) and added drop-wise at room temperature. The products 8a-j were isolated in $72-84 \%$ yield (see Table 1) by flash chromatography (20 \% ethyl acetate in hexane) without previous extraction and characterized in accordance with literature data [23-39].
N-iso-Propylacetamide 8a [23]: (76 \%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 5.34$ (br, 1H), 4.06 (hept, J 6.6, 1H), 1.95 ($\mathrm{s}, 3 \mathrm{H}$), 1.15 (d, J 6.6, 6H).
N-Benzylacetamide 8b [24]: (72 \%); ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta \quad 7.24-7.31$ (m, 5H), 6.53 (br, 1H), 4.35 (d, J 5.5, 2H), 1.95 (s, 3H).
N-iso-Propylbenzamide 8c [25, 38]: (72 \%).
N-Benzylbenzamide 8d [26, 39]: (73 \%).
Methyl N-iso-propylcarbamate (8e) [27]: (76 \%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (400 MHz , deuteriochloroform): $\delta 1.15$ (d, J 6.4, 6H), 3.65 (s, 3H), 3.80 (m, 1H), 4.49 (br., 1H).

Methyl N-benzylcarbamate (8f) [28]: (84 \%); ${ }^{1} \mathrm{H}$ nmr (300 MHz , deuteriochloroform): $\delta 7.27(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{br}, 1 \mathrm{H}), 4.33$ (d, J 5.8, 2H), 3.67 (s, 3H).

Ethyl N-iso-propylcarbamate (8g) [29]: (73 \%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 1.15$ (d, J 6.5, 6H), 1.24 (t, J 7.1, $3 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{q}, \mathrm{J} 7.1,2 \mathrm{H}), 4.55(\mathrm{br}, 1 \mathrm{H})$.

Ethyl N-benzylcarbamate (8h) [30]: (73 \%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 7.27$ (m, 5H), 5.18 (br, 1H), 4.32 (d, J 5.9, 2H), 4.11 (q, J 7.1, 2H), 1.23 (t, J 7.1, 3H).
tert-Butyl N-iso-propylcarbamate (8i) [31]: (74 \%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (400 MHz , deuteriochloroform): $\delta 4.35$ (br, 1 H), $3.76(\mathrm{~m}, 1 \mathrm{H})$, 1.46 (s, 9H), 1.14 (d, J 6.4, 6H).
tert-Butyl N-benzylcarbamate ($\mathbf{8 j}$) [32]: (73 \%); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 7.28$ (m, 5H), 4.89 (br, 1H), 4.30 (d, J 5.7, 2H), 1.46 (s, 9H).
N-Alkoxycarbonylation of L-phenylalanine Ethyl Ester 9a.
L-Phenylalanine ethyl ester N-tert-butyl carbamate (9b) [36] was prepared from L-phenylalanine ethyl ester hydrochloric salt 9a and tert-butoxycarbonyltriazolopyridine $\mathbf{1 e}$ (prepared in situ from $7 \mathbf{e}$) as described above for the amine derivatives $\mathbf{8 i}$ and $\mathbf{8 j}$. However, larger excess of BOC-triazolopyridines 1e (2 equivalents) was used and the reaction was performed in the presence of triethyl amine (2 equivalents). Four days reaction time was needed to obtain 76% yield after flash chromatography (20% ethyl acetate in hexane). The product was characterized according to literature [37].
Acknowledgements.
Financial support from the Research Council of Norway is gratefully acknowledged.

REFERENCES AND NOTES

[1] R. L. Clark, A. A. Pessolano, T.-Y. Shen, DE 2623414 (1976); Chem. Abstr. 86, 106600 (1976).
[2] B. Briekiesz-Lewandowska, and Z. Talik, , Rocz, Chem., 44, 69 (1970); Chem. Abstr. 73, 45415 (1970).
[3] R. Heckendorn, EP 74929 (1983); Chem. Abstr. 99, 53786 (1983).
[4] E. Nagano, R. Yoshida, EP 116928 (1984); Chem. Abstr. 102, 45951 (1984).
[5] O. Bremer, Justus Liebigs Ann. Chem., 518, 274 (1935).
[6] I. Torrini, G. P. Zeccini, F. Agrosi and M. P. Paradisi, J. Heterocyclic Chem., 23, 1459 (1986).
[7] Y. Deng, Y. Shen, Y. Zhong, Huaxi Yaoxue Zazhi, 16, 273 (2001); Chem. Abstr. 136, 369660 (2001).
[8] B. Du, H. Han, Henan Yike Daxue Xuebao, 36, 350 (2001); Chem. Abstr. 136, 294771 (2001).
[9] R. Buechner, H. Brendel, H. Rauhut, B. Eitner, K. Hartmann, DD 273630 (1989); Chem. Abstr. 112, 235324 (1989).
[10] R. E. Damschroder, W. D. Peterson, Organic Syntheses, 20, 6 (1940).
[11] A. R. Katritzky, H.-Y. He and K. Suzuki, J. Org. Chem., 65, 8210 (2000).
[12] A. R. Katritzky and B. V. Rogovoy, Chem. Eur. J., 9, 4586 (2003).
[13] A. R. Katritzky, A. A. A. Abdel-Fattah and M. Wang, J. Org. Chem., 68, 1443 (2003).
[14] A. R. Katritzky, , A. A. A. Abdel-Fattah and M. Wang, J. Org. Chem., 68, 4932 (2003).
[15] A. R. Katritzky and A. Pastor, J. Org. Chem., 65, 3679 (2000).
[16] A. R. Katritzky, K. Suzuki, S. K. Singh, H.-Y. He, J. Org. Chem., 68, 5720 (2003).
[17] J. M. Bakke, I. Hegbom, K. Øvreeide and K. Aaby, Acta Chem. Scand., 48, 1001 (1994).
[18] J. M. Bakke and E. Ranes, Synthesis, 281 (1997).
[19] J. M. Bakke and J. Riha, J. Heterocyclic Chem., 36, 1143 (1999).
[20] J. B. Campbell, J. M. Greene, E. R. Lavagnino, D. N. Gardner, A. J. Pike, J. Snoddy and E. C. Taylor, J. Heterocyclic Chem., 23, 669 (1986).
[21] J. M. Bakke, H. S. H. Gautun and H. Svensen, J. Heterocyclic Chem., 40, 585 (2003).
[22] J. Holt, T. Andreassen, J. M. Bakke, and A. Fiksdahl, J. Heterocyclic Chem., 42, 259 (2005).
[23] D. Bovet, R. Jacob, R. Ducrot and S. Courvoisier, Compt. rend., 224, 496 (1947).
[24] J. B. Hendrickson and R. Bergeron, Tetrahedron Letters, 46, 4607 (1973).
[25] V. K. Haridasan, A. Ajayaghosh and V. N. Rajasekharan Pillai, J. Org. Chem., 52, 2662 (1987).
[26] T.-L. Ho, Synthetic Comm iso-unications, 7, 393 (1977).
[27] M. Mullier and G. Smets, J. Polymer Scince, 23, 915 (1957).
[28] P. C. de la Saulniere, Annali di Chimica Applicata, 17, 353 (1942).
[29] S. Van der Werf and J. B. F. N. Engberts, Rec. Trav. Chim. Pays-Bas, 89, 423 (1970).
[30] L. C. Chen and S. C. Yang, J. Chinese Chem. Soc., 33, 347 (1986).
[31] T. Szirtes, E. Palosi, E. Ezer, L. Szporny and L. Kisfaludy, Acta Pharm. Hung., 43, 224 (1973).
[32] L. A. Carpino, J. Am. Chem. Soc., 79, 4427 (1957).
[33] J. M. Bakke, E. Ranes, J. Riha and H. Svensen, Acta Chem.

Scand., 53, 141 (1999).
[34] J. M. Bakke and J. Riha, J. Heterocyclic Chem., 38, 99 (2001).
[35] J. Holt, J. M. Bakke and A. Fiksdahl, J. Heterocyclic Chem. (2005) submitted.
[36] M. Leplawy, W. Stec, Bull. de l'Academie Polonaise des Sciences, Serie des Sciences Chim., 12, 21 (1964).
[37] S. Aoki, L. Cao, K. Matsui, R. Rachmat, S. Akiyama and M. Kobayashi, Tetrahedron, 60, 7053 (2004).
[38] J. A. Murphy and S. J. Roome, J. Chem. Soc. Perkin Trans 1, 1349 (1995).
[39] K. V. N. S. Srinivas and B. Das, J. Org. Chem. 681165 (2003).

[^0]: [a] Conversion is based on ${ }^{1} \mathrm{H} \mathrm{nmr}$ of crude product reaction mixture. Yields are calculated after chromatography.

